首页> 外文OA文献 >Intelligent Maximum Power Extraction Control for Wind Energy Conversion Systems Based on Online Q-learning with Function Approximation
【2h】

Intelligent Maximum Power Extraction Control for Wind Energy Conversion Systems Based on Online Q-learning with Function Approximation

机译:风力智能最大功率提取控制 基于在线Q学习的能量转换系统 具有函数逼近

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes an intelligent maximum power point tracking (MPPT) algorithm for variable-speed wind energy conversion systems (WECSs) based on an online Q-learning algorithm. Instead of using the conventional Qlearning that uses a lookup table to store the action values for the discretized states, artificial neural networks (ANNs) are used as function approximators to output the action values by using the electrical power and rotor speed of the generator as inputs. This eliminates the need for a large storage memory. The proposed method learns the optimal speed control strategy of the WECS by updating the connecting weights of the ANNs, which has a lower computational cost than the conventional Qlearning method. Moreover, the knowledge of wind turbine characteristics or wind speed measurement is not required in the proposed method. The proposed method is validated by simulations for a WECS equipped with a doubly-fed induction generator (DFIG) and experimental results for an emulated WECS equipped with a permanent-magnet synchronous generator (PMSG).
机译:本文提出了一种基于在线Q学习算法的智能风能最大功率跟踪(MPPT)算法,用于变速风能转换系统(WECSs)。代替使用传统的使用查找表存储离散状态的动作值的Qlearning,而是使用人工神经网络(ANN)作为函数近似器,通过使用发电机的电功率和转子速度作为输入来输出动作值。这消除了对大存储存储器的需求。提出的方法通过更新神经网络的连接权重来学习WECS的最佳速度控制策略,与传统的Qlearning方法相比,其计算成本较低。此外,在所提出的方法中不需要风力涡轮机特性或风速测量的知识。通过对配备有双馈感应发电机(DFIG)的WECS进行仿真,并针对配备有永磁同步发电机(PMSG)的仿真WECS的实验结果,验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号